| +86 731 85124338 sales@hnjc-metal.com

碳氮化钛Ti(C,N)粉末的制备

2022-06-29
碳氮化钛是一种性能优良、用途广泛的非氧化物陶瓷材料,具有高熔点、高硬度、耐磨、耐腐蚀等特性,并具有良好的导热性、导电性和化学稳定性,在机械、化工、汽车制造和航空航天等领域有广泛的应用。碳氮化钛兼具了TiCTiN的优点,除了非常适合高端精密加工和近净成型加工以外,它在保持TiC特点基础上,由于N的引入,TiC脆性特点得到明显改善。在随着N含量增加,其硬度降低,韧性提高。正是由于其优良的综合性能,使得碳氮化钛基陶瓷在切削领域、耐高温材料、量具、石油和化工、钟表外观等领域有了广泛的应用。
1、高温固溶法
 
高温固溶法是制备Ti(C,N)粉末的传统方法,通常是由一定量的TiN和TiC粉末均匀混合于1700~1800℃高温下热压固溶形成,或于Ar或N2气氛中在更高的温度下通过固溶而获得。为了抑制晶粒长大,同时提高粉末活性和烧结性能,也可以适当降低固溶温度。即使降低固溶温度,高温固溶法也存在反应温度过高、能耗大、难以获得高纯粉末、N/C比不易准确控制等缺点。
 
2、TiN和C粉高温氮化法
 
高温氮化法通常是以TiN粉末和C粉为原料,混合后在高温和N2或Ar气氛下进行长时间碳氮化处理,从而获得Ti(C,N)粉体。Frederic等用纳米尺寸的TiN粉末+10wt%的炭黑在Ar气流中于1430℃保温3h,固相合成了Ti(C,N)粉末,展现出规则形状的亚微米颗粒。同样,高温氮化法存在反应温度过高、生产效率低、能耗大、生产成本高等缺点。
 
3、TiO2碳热还原氮化法
 
碳热还原氮化法是以TiO2和C粉为原料,在N2中高温还原合成Ti(C,N)粉末的工艺,碳热还原法产物的大小及形貌可通过工艺参数控制,广泛应用于工业大规模生产。
 
4、溶胶-凝胶法
 
溶胶-凝胶法是采用TiO(OH)2溶胶为Ti源,在液相中将炭黑混合、分散,经过系列反应得到的凝胶在N2下高温热处理得到Ti(C,N)粉末。有研究者以TiO(OH)2溶胶与纳米级炭黑混合后形成的凝胶,经干燥后在N2气氛下1400~1600℃高温反应得到Ti(Cx,N1-x),其中1-x=0.2~0.7,Ti(Cx,N1-x)超细粉末的平均粒径<100nm。通过提高原料C/Ti比、提高反应温度、延长保温时间、降低氮气流量等工艺有利于提高x值。
 
5、氨解法
 
氨解法通常是在常温下,将TiCl4溶入适当的溶剂中并加入添加剂,混合均匀后与NH3反应,生成Ti的胺基化合物与添加剂的均匀混合中间体,然后中间体与NH4Cl溶液混合沉淀并除去中间体中的胺,再在真空或Ar气氛下于1200~1600℃热解获得Ti(C,N)粉末。氨解法的特点是制备温度比传统制备方法(高温固溶法,1800℃)低,得到的Ti(C,N)粉末具有比表面积高、粒度小、粒度分布集中和纯度高等优点,但成本较高,工艺过程复杂。
 
6、高温自蔓延反应法
 
高温自蔓延反应法是将Ti粉、C粉均匀混合,预压成型得到压坯,然后在含N2的装置中高温“点燃”反应,从而得到块体产物,通过破碎细化可得到Ti(C,N)粉末。
 
7、等离子体化学气相沉积法
 
Ti(C,N)等离子体化学气相沉积法通常是用等离子体激活TiCl4反应气体,促进其在基体表面或近表面空间进行化学反应,生成Ti(C,N)固态膜的技术。后来为了避免TiCl4对反应容器的腐蚀和对环境造成污染,常采用无氯的含Ti有机物来取代TiCl4。这类含Ti有机物主要包括钛酸四甲脂、钛酸四乙脂、四异丙基钛、钛酸四丁脂及氨基钛等。
 
8、高能球磨诱导自蔓延合成法
 
高能球磨作为一种粉体加工方法,不仅可以均匀混合并活化粉末从而降低烧结反应温度、促进合金化,还可以在室温下诱导自蔓延反应合成纳米Ti(C,N)粉体。高能球磨诱导自蔓延合成Ti(C,N)技术集粉末混合和反应于一体,克服了传统的高温条件,可直接得到Ti(C,N)粉末。

碳氮化钛